Friedrichs inequality in irregular domains
نویسندگان
چکیده
منابع مشابه
Discontinuous Galerkin Methods for Friedrichs Systems with Irregular Solutions
Discontinuous Galerkin Methods for Friedrichs Systems with Irregular Solutions Max Jensen Doctor of Philosophy Corpus Christi College Michaelmas Term 2004 This work is concerned with the numerical solution of Friedrichs systems by discontinuous Galerkin finite element methods (DGFEMs). Friedrichs systems are boundary value problems with symmetric, positive, linear first-order partial differenti...
متن کاملDirichlet integrals and Gaffney-Friedrichs inequalities in convex domains
We study geometrical conditions guaranteeing the validity of the classical GaffneyFriedrichs estimate ‖u‖H1,2(Ω) ≤ C ( ‖du‖L2(Ω) + ‖δu‖L2(Ω) + ‖u‖L2(Ω) ) (0.1) granted that the differential form u has a vanishing tangential or normal component on ∂Ω. Our main result is that (0.1) holds provided Ω satisfies a suitable convexity assumption. In the Euclidean setting, a uniform exterior ball condit...
متن کاملIrregular Homogeneity Domains in Ternary Intermetallic Systems
Ternary intermetallic A–B–C systems sometimes have unexpected behaviors. The present paper examines situations in which there is a tendency to simultaneously form the compounds ABx, ACx and BCx with the same crystal structure. This causes irregular shapes of the phase homogeneity domains and, from a structural point of view, a complete reversal of site occupancies for the B atom when crossing t...
متن کاملHeat Kernel Smoothing in Irregular Image Domains
We review heat kernel smoothing techniques for denoising and regressing data in irregularly shaped domains embedded in Euclidean spaces. This is a problem often encountered in functional data analysis and medical imaging. In this chapter, we present a unified mathematical framework based on the eigenfunctions of the Laplace-Beltrami operators defined on irregular domains. Numerical implementati...
متن کاملOptimality Conditions for Irregular Inequality-Constrained Problems
We consider feasible sets given by conic constraints, where the cone defining the constraints is convex with nonempty interior. We study the case where the feasible set is not assumed to be regular in the classical sense of Robinson and obtain a constructive description of the tangent cone under a certain new second-order regularity condition. This condition contains classical regularity as a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2020
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2019.123665